NADAR! ADS
Periodização e programação para nadadores de 400 medley
Downloads
Palavras-chave:
natação, nado medley, temporada, periodizaçãoResumo
O conhecimento no domínio científico do treinamento individual de natação medley (IM) durante uma temporada competitiva é limitado. O objetivo deste estudo foi propor uma estrutura de treinamento detalhada incorporando os elementos-chave de um regime de treinamento periodizado para um nadador de 400 m IM. Esta estrutura foi baseada no treinamento disponível e na literatura científica e na experiência prática e conhecimento dos autores colaboradores. A temporada foi dividida em dois ou três macrociclos, subdivididos em três mesociclos cada (seis ou nove mesociclos no total), em alinhamento com as duas ou três principais competições em cada macrociclo. Os principais conteúdos de treinamento a serem desenvolvidos durante a temporada expressos em zonas de lactato sanguíneo são: treinamento aeróbico (~2 mmol•L-1), ritmo de limiar de lactato (~4 mmol•L-1) e VO2max (captação máxima de oxigênio) (~6 mmol•L-1). O treinamento de força deve se concentrar na resistência máxima de força, potência e velocidade durante a temporada. Os camps de treinamento em altitude podem ser colocados estrategicamente durante a temporada de treinamento para promover a adaptação fisiológica e melhorias no desempenho. Uma estrutura técnica bem construída permitirá o desenvolvimento de estratégias de treinamento para o nadador de 400 m IM para melhorar tanto o treinamento quanto o desempenho competitivo.
Referências
(1) Pyne D., Sharp R. Physical and energy requirements of competitive swimming events. Int. J. Sport Nutr. Exerc. Metab. 2014;24:351–359. DOI: 10.1123/ijsnem.2014-0047.
(2) Gonjo T., Olstad B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health. 2021;18:69. DOI: 10.3390/ijerph18010069.
(3) What Can We Learn from Competition Analysis at the 1999 Pan Pacific Swimming Championships? [(accessed on 14 June 2021)]; Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/2155
(4) Saavedra J.M., Escalante Y., Garcia-Hermoso A., Arellano R., Navarro F. A 12-year analysis of pacing strategies in 200-and 400-m individual medley in international swimming competitions. J. Strength Cond. Res. 2012;26:3289–3296. DOI: 10.1519/JSC.0b013e318248aed5.
(5) Robertson E.Y., Pyne D.B., Hopkins W.G., Anson J.M. Analysis of lap times in international swimming competitions. J. Sports Sci. 2009;27:387–395. DOI: 10.1080/02640410802641400.
(6) Del Castillo J.A., González-Ravé J.M., Hermosilla F., Santos del Cerro J., Pyne B.D. The importance of previous season performance on world-class 200- and 400-m individual medley swimming. Biol. Sport. 2021;39:45–51.
(7) Cunanan A.J., DeWeese B.H., Wagle J.P., Carroll K.M., Sausaman R., Hornsby W.G., Haff G.G., Triplett N.T., Pierce K.C., Stone M.H. The general adaptation syndrome: A foundation for the concept of periodization. Sports Med. 2018;48:787–797. DOI: 10.1007/s40279-017-0855-3.
(8) Afonso J., Clemente F.M., Ribeiro J., Ferreira M., Fernandes R.J. Towards a de facto Nonlinear Periodization: Extending Nonlinearity from Programming to Periodizing. Sports. 2020;8:110. DOI: 10.3390/sports8080110.
(9) Boullosa D., Esteve-Lanao J., Casado A., Peyré-Tartaruga L.A., da Rosa R.G., Del Coso J. Factors Affecting Training and Physical Performance in Recreational Endurance Runners. Sports. 2020;8:35. DOI: 10.3390/sports8030035.
(10) Baumeister R.F., Leary M.R. Writing narrative literature reviews. Rev. Gen. Psychol. 1997;1:311–320. DOI: 10.1037/1089-2680.1.3.311.
(11) Pollock S., Gaoua N., Johnston M.J., Cooke K., Girard O., Mileva K.N. Training regimes and recovery monitoring practices of elite British swimmers. J. Sports Sci. Med. 2019;18:577.
(12) Hellard P., Avalos-Fernandes M., Lefort G., Pla R., Mujika I., Toussaint J.-F., Pyne D.B. Elite swimmers’ training patterns in the 25 weeks prior to their season’s best performances: Insights into periodization from a 20-years cohort. Front. Physiol. 2019;10:363. DOI: 10.3389/fphys.2019.00363.
(13) Pla R., Le Meur Y., Aubry A., Toussaint J., Hellard P. Effects of a 6-week period of polarized or threshold training on performance and fatigue in elite swimmers. Int. J. Sports Physiol. Perform. 2019;14:183–189. DOI: 10.1123/ijspp.2018-0179.
(14) González-Ravé J.M., Hermosilla F., González-Mohíno F., Casado A., Pyne D.B. Training Intensity Distribution, Training Volume, and Periodization Models in Elite Swimmers: A Systematic Review. Int. J. Sports Physiol. Perform. 2021;1:1–14. DOI: 10.1123/ijspp.2020-0906. (in press)
(15) Capelli C., Pendergast D.R., Termin B. Energetics of swimming at maximal speeds in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998;78:385–393. DOI: 10.1007/s004210050435.
(16) Toubekis A.G., Tokmakidis S.P. Metabolic responses at various intensities relative to critical swimming velocity. J. Strength Cond. Res. 2013;27:1731–1741. DOI: 10.1519/JSC.0b013e31828dde1e.
(17) Reis J.F., Alves F.B., Bruno P.M., Vleck V., Millet G.P. Oxygen uptake kinetics and middle distance swimming performance. J. Sci Med. Sport. 2012;15:58–63. DOI: 10.1016/j.jsams.2011.05.012.
(18) Fernandes R.J., Vilas-Boas J.P. Time to Exhaustion at the VO2max Velocity in Swimming: A Review. J. Hum. Kinet. 2012;32:121–134. DOI: 10.2478/v10078-012-0029-1.
(19) Fernandes R., Keskinen K., Colaço P., Querido A., Machado L., Morais P., Novais D., Marinho D., Vilas-Boas J.P. Time Limit at VO2max Velocity in Elite Crawl Swimmers. Int. J. Sports Med. 2008;29:145–150. DOI: 10.1055/s-2007-965113.
(20) Sousa A.C., Vilas-Boas J.P., Fernandes R.J. Kinetics and Metabolic Contributions Whilst Swimming at 95, 100, and 105% of the Velocity at. Biomed. Res. 2014;2014:675363.
(21) Jones A.M., Grassi B., Christensen P.M., Krustrup P., Bangsbo J., Poole D.C. Slow component of VO2 kinetics: Mechanistic bases and practical applications. Med. Sci. Sports Exerc. 2011;43:2046–2062. DOI: 10.1249/MSS.0b013e31821fcfc1.
(22) Zamparo P., Capelli C., Cautero M., Di Nino A. Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers. Eur. J. Appl. Physiol. 2000;83:487–491. DOI: 10.1007/s004210000318.
(23) Feijen S., Tate A., Kuppens K., Barry L.A., Struyf F. Monitoring the swimmer’s training load: A narrative review of monitoring strategies applied in research. Scand. J. Med. Sci. Sports. 2020;30:2037–2043. DOI: 10.1111/sms.13798.
(24) Clemente-Suárez V., Fernandes R.J., Arroyo-Toledo J., Figueiredo P., González-Ravé J.M., Vilas-Boas J. Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiol. Hung. 2015;102:105–113. DOI: 10.1556/APhysiol.102.2015.1.11.
(25) Clemente-Suárez V., Fernandes R.J., de Jesus K., Pelarigo J.G., Arroyo-Toledo J.J., Vilas-Boas J.P. Do traditional and reverse swimming training periodizations lead to similar aerobic performance improvements? J. Sports Med. Phys. Fit. 2018;58:761–767.
(26) Mujika I., Chatard J.-C., Busso T., Geyssant A., Barale F., Lacoste L. Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995;20:395–406. DOI: 10.1139/h95-031.
(27) Achten J., Jeukendrup A.E. Heart rate monitoring. Sports Med. 2003;33:517–538. DOI: 10.2165/00007256-200333070-00004.
(28) Olbrecht J. The Science of Winning: Planning, Periodizing and Optimizing Swim Training. F & G Partners; Antwerp, Belgium: 2007. Determining Training Intensity and Content.
(29) Carvalho D.D., Soares S., Zacca R., Sousa J., Marinho D.A., Silva A.J., Vilas-Boas J.P., Fernandes R.J. Anaerobic threshold biophysical characterisation of the four swimming techniques. Int. J. Sports Med. 2020;41:318–327. DOI: 10.1055/a-0975-9532.
(30) Nicolas M., Vacher P., Martinent G., Mourot L. Monitoring stress and recovery states: Structural and external stages of the short version of the RESTQ sport in elite swimmers before championships. J. Sport Health Sci. 2019;8:77–88. DOI: 10.1016/j.jshs.2016.03.007.
(31) Elbe A.-M., Rasmussen C.P., Nielsen G., Nordsborg N.B. High intensity and reduced volume training attenuates stress and recovery levels in elite swimmers. Eur. J. Sport Sci. 2016;16:344–349. DOI: 10.1080/17461391.2015.1028466.
(32) García-Ramos A., Feriche B., Calderón C., Iglesias X., Barrero A., Chaverri D., Schuller T., Rodríguez F.A. Training load quantification in elite swimmers using a modified version of the training impulse method. Eur. J. Sport Sci. 2015;15:85–93. DOI: 10.1080/17461391.2014.922621.
(33) Foster C., Boullosa D., McGuigan M., Fusco A., Cortis C., Arney B.E., Orton B., Dodge C., Jaime S., Radtke K., et al. 25 Years of Session Rating of Perceived Exertion: Historical Perspective and Development. Int. J. Sports Physiol. Perform. 2021;16:612–621. DOI: 10.1123/ijspp.2020-0599.
(34) Psycharakis S.G. A longitudinal analysis on the validity and reliability of ratings of perceived exertion for elite swimmers. J. Strength Cond. Res. 2011;25:420–426. DOI: 10.1519/JSC.0b013e3181bff58c.
(35) Ueda T., Kurokawa T. Relationships between perceived exertion and physiological variables during swimming. Int. J. Sports Med. 1995;16:385–389. DOI: 10.1055/s-2007-973025.
(36) Green J.M., McLester J.R., Crews T.R., Wickwire P.J., Pritchett R.C., Lomax R.G. RPE association with lactate and heart rate during high-intensity interval cycling. Med. Sci. Sports Exerc. 2006;38:167–172. DOI: 10.1249/01.mss.0000180359.98241.a2.
(37) Foster C., Florhaug J.A., Franklin J., Gottschall L., Hrovatin L.A., Parker S., Doleshal P., Dodge C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001;15:109–115.
(38) Williams J.G., Eston R.G. Determination of the intensity dimension in vigorous exercise programmes with particular reference to the use of the rating of perceived exertion. Sports Med. 1989;8:177–189. DOI: 10.2165/00007256-198908030-00004.
(39) Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998;30:1164–1168. DOI: 10.1097/00005768-199807000-00023.
(40) Impellizzeri F.M., Marcora S.M., Coutts A.J. Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 2019;14:270–273. DOI: 10.1123/ijspp.2018-0935.
(41) Kataoka R., Vasenina E., Loenneke J., Buckner S.L. Periodization: Variation in the Definition and Discrepancies in Study Design. Sports Med. 2021;51:625–651. DOI: 10.1007/s40279-020-01414-5.
(42) Arroyo-Toledo J.J., Clemente V.J., Gonzalez-Rave J.M., Ramos Campo D.J., Sortwell A. Comparison between traditional and reverse periodization: Swimming performance and specific strength values. Int. J. Swim. Kinet. 2013;2:87–96.
(43) Issurin V.B. Biological background of block periodized endurance training: A review. Sports Med. 2019;49:31–39. DOI: 10.1007/s40279-018-1019-9.
(44) Stone M.H., Hornsby G., Haff G., Fry A., Suarez D., Liu J., Gonzalez-Rave J.M., Pierce K.C. Periodization and Block Periodization in Sports: Emphasis on strength-power training: A provocative and challenging narrative. J. Strength Cond. Res. 2021 (in press)
(45) Mujika I., Halson S., Burke L.M., Balagué G., Farrow D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int. J. Sports Physiol. Perform. 2018;13:538–561. DOI: 10.1123/ijspp.2018-0093.
(46) Laffite L.P., Vilas-Boas J.P., Demarle A., Silva J., Fernandes R., Billat V.L. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can. J. Appl. Physiol. 2004;29:S17–S31. DOI: 10.1139/h2004-055.
(47) Pyne D. The periodisation of swimming training at the Australian Institute of Sport. Sports Coach. 1996;18:34–38.
(48) Aspenes S.T., Karlsen T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012;42:527–543. DOI: 10.2165/11630760-000000000-00000.
(49) Mujika I., Padilla S. Scientific bases for precompetition tapering strategies. Med. Sci. Sports Exerc. 2003;35:1182–1187. DOI: 10.1249/01.MSS.0000074448.73931.11.
(50) Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int. J. Sports Physiol. Perform. 2010;5:276–291. DOI: 10.1123/ijspp.5.3.276.
(51) Issurin V. Block periodization versus traditional training theory: A review. J. Sports Med. Phys. Fit. 2008;48:65.
(52) Turner A.N., Bishop C., Cree J., Carr P., McCann A., Bartholomew B., Halsted L. Building a high-performance model for sport: A human development-centered approach. J. Strength Cond. Res. 2019;41:100–107. DOI: 10.1519/SSC.0000000000000447.
(53) Sweetenham B., Atkinson J. Championship Swim Training. Volume 1 Human Kinetics; Champaign, IL, USA: 2003.
(54) Pugliese L., Serpiello F.R., Millet G.P., La Torre A. Training diaries during altitude training camp in two Olympic champions: An observational case study. J. Sports Sci. Med. 2014;13:666.
(55) Semenza G.L. HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 2000;88:1474–1480. DOI: 10.1152/jappl.2000.88.4.1474.
(56) Millet G.P., Chapman R.F., Girard O., Brocherie F. Is live high train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. Br. J. Sports Med. 2019;53:923–925. DOI: 10.1136/bjsports-2017-098083.
(57) Gore C.J., Sharpe K., Garvican-Lewis L.A., Saunders P.U., Humberstone C.E., Robertson E.Y., Wachsmuth N.B., Clark S.A., McLean B.D., Friedmann-Bette B. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br. J. Sports Med. 2013;47(Suppl. 1):31–39. DOI: 10.1136/bjsports-2013-092840.
(58) Gore C.J., Clark S.A., Saunders P.U. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med. Sci. Sports Exerc. 2007;39:1600–1609. DOI: 10.1249/mss.0b013e3180de49d3.
(59) Mujika I., Sharma A.P., Stellingwerff T. Contemporary periodization of altitude training for elite endurance athletes: A narrative review. Sports Med. 2019;49:1651–1669. DOI: 10.1007/s40279-019-01165-y.
(60) Solli G.S., Tønnessen E., Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier. Front. Physiol. 2017;8:1069. DOI: 10.3389/fphys.2017.01069.
(61) Bonne T.C., Lundby C., Jørgensen S., Johansen L., Mrgan M., Bech S.R., Sander M., Papoti M., Nordsborg N.B. “Live High–Train High” increases hemoglobin mass in Olympic swimmers. Eur. J. Appl. Physiol. 2014;114:1439–1449. DOI: 10.1007/s00421-014-2863-4.
(62) Saunders P.U., Pyne D.B., Gore C.J. Endurance training at altitude. High. Alt. Med. Biol. 2009;10:135–148. DOI: 10.1089/ham.2008.1092.
(63) Millet G.P., Roels B., Schmitt L., Woorons X., Richalet J.-P. Combining hypoxic methods for peak performance. Sports Med. 2010;40:1–25. DOI: 10.2165/11317920-000000000-00000.
(64) Wachsmuth N., Völzke C., Prommer N., Schmidt-Trucksäss A., Frese F., Spahl O., Eastwood A., Stray-Gundersen J., Schmidt W. The effects of classic altitude training on hemoglobin mass in swimmers. Eur. J. Appl. Physiol. 2013;113:1199–1211. DOI: 10.1007/s00421-012-2536-0.
(65) Chapman R.F., Stickford A.S.L., Lundby C., Levine B.D. Timing of return from altitude training for optimal sea level performance. J. Appl Physiol. 2014;116:837–843. DOI: 10.1152/japplphysiol.00663.2013.
(66) Bonifazi M., Sardella F., Lupo C. Preparatory versus main competitions: Differences in performances, lactate responses and pre-competition plasma cortisol concentrations in elite male swimmers. Eur. J. Appl. Physiol. 2000;82:368–373. DOI: 10.1007/s004210000230.
(67) Hellard P., Avalos M., Hausswirth C., Pyne D., Toussaint J.F., Mujika I. Identifying Optimal Overload and Taper in Elite Swimmers over Time. J. Sports Sci. Med. 2013;12:668–678.
(68) Costill D., Thomas R., Robergs R., Pascoe D., Lambert C., Barr S., Fink W. Adaptations to swimming training: Influence of training volume. Med. Sci. Sports Exerc. 1991;23:371–377. DOI: 10.1249/00005768-199103000-00017.
(69) Wenger H., Bell G. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med. 1986;3:346–356. DOI: 10.2165/00007256-198603050-00004.
(70) Crowley E., Harrison A.J., Lyons M. Dry-land resistance training practices of elite swimming strength and conditioning coaches. J. Strength Cond. Res. 2018;32:2592–2600. DOI: 10.1519/JSC.0000000000002599.
(71) Gotshalk L.A., Berger R.A., Kraemer W.J. Cardiovascular responses to a high-volume continuous circuit resistance training protocol. J. Strength Cond. Res. 2004;18:760–764.
(72) Willardson J.M. Core stability training: Applications to sports conditioning programs. J. Strength Cond. Res. 2007;21:979–985. DOI: 10.1519/00124278-200708000-00054.
(73) Matveyev L.P. Periodization of Sports Training. Fiscultura I Sport; Moscow, Russia: 1966.
(74) Bompa T.O., Haff G.G. Periodization: Theory and Methodology of Training. Human Kinetics; Champaign, IL, USA: 2009.
(75) Bompa T.O., Buzzichelli C. Periodization: Theory and Methodology of Training. Human Kinetics; Champaign, IL, USA: 2018.
(76) Pyne D. ASCTA 1999 Conference Presentations. Australian Swimming Coaches and Teachers Association; Lavington, Australia: 1999. Training for positive outcomes.
(77) Sokolowski K., Strzala M., Stanula A. Different forms of swimmers’ final weeks pre-competition preparation. Balt. J. Health Phys. Act. 2020;12:105–119. DOI: 10.29359/BJHPA.12.4.10.
OBS.:
Artigo adaptado e traduzido para o português pelos editores de NADAR! SWIMMING MAGAZINE para republicação, conforme normas de submissão do periódico. Versão original em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296310/ LICENÇA ORIGINAL E DA ADAPTAÇÃO: http://creativecommons.org/licenses/by/4.0/.
Publicado
Como Citar
Edição
Seção
ARK
Licença
Copyright (c) 2023 Francisco Hermosilla , José González-Rave, José Antonio Del Castillo, David B. Pyne
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.